Me structure on integration events directed by HIV integrase. J BiolMe structure on integration events

Me structure on integration events directed by HIV integrase. J Biol
Me structure on integration events directed by HIV integrase. J Biol Chem. 1994;269:25031?1. 36. Katz RA, Gravuer K, Skalka AM. A preferred target DNA structure for retroviral integrase in vitro. J Biol Chem. 1998;273:24190?.Serrao et al. Retrovirology (2015) 12:Page 17 of37. Pryciak PM, Varmus HE. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell. 1992;69:769?0. 38. Pruss D, Bushman FD, Wolffe AP. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome PubMed ID: core. Proc Natl Acad Sci U S A. 1994;91:5913?. 39. Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R, Hare S, et al. Structural basis for retroviral integration into nucleosomes. Nature. 2015, in press. 40. Bor YC, Bushman FD, Orgel LE. In vitro integration of human immunodeficiency virus type 1 cDNA into targets containing protein-induced bends. Proc Natl Acad Sci U S A. 1995;92:10334?. 41. Pryciak PM, M ler HP, Varmus HE. Simian virus 40 minichromosomes as targets for retroviral integration in vivo. Proc Natl Acad Sci U S A. 1992;89:9237?1. 42. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 2007;17:1186?4. 43. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G, et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther. 2009;17:844?0. 44. Roth SL, Malani N, Bushman FD. Gammaretroviral integration into nucleosomal target DNA in vivo. J Virol. 2011;85:7393?01. 45. Benleulmi MS, Matysiak J, Henriquez DR, Vaillant C, Lesbats P, Calmels C, et al. Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology. 2015;12:13. 46. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, et al. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res. 2009;37:243?5. 47. Schweizer M, Fleps U, J kle A, Renne R, Turek R, Neumann-Haefelin D. Simian foamy virus type 3 (SFV-3) in latently infected Vero cells: reactivation by demethylation of proviral DNA. Virology. 1993;192:663?. 48. Neves M, P i J, Sa A. Study of human foamy virus proviral integration in chronically infected murine cells. Res Virol. 1998;149:393?01. 49. Dhar R, McClements WL, Enquist LW, Vande Woude GF. Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proc Natl Acad Sci U S A. 1980;77:3937?1. 50. Shoemaker C, Goff S, Gilboa E, Paskind M, Mitra SW, PubMed ID: Baltimore D. Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc Natl Acad Sci U S A. 1980;77:3932?. 51. Niebert M, Rogel-Gaillard C, Chardon P, T jes RR. Characterization of chromosomally assigned replication-competent gamma porcine TAPI-2 custom synthesis endogenous retroviruses derived from a large white pig and expression in human cells. J Virol. 2002;76:2714?0. 52. Gorbovitskaia M, Liu Z, Bourgeaux N, Li N, Lian Z, Chardon P, et al. Characterization of two porcine endogenous retrovirus integration loci and variability in pigs. Immunogenetics. 2003;55:262?0. 53. Kim S, Kim N, Dong B, Boren D, Lee SA, Das Gupta J, et al. Integration site preference of xenotropic murine leukemia virus-.