Share this post on:

Eview. Crit. Rev. MMP-3 Inhibitor drug Biotechnol. 2008, 28, 25364. Shah, S.; Sharma, S.; Gupta, M.N. biodiesel preparation by lipase-catalyzed transesterification of jatropha oil. Energy Fuels 2004, 18, 15459. Shaw, J.F.; Chang, S.W.; Lin, S.C.; Wu, T.T.; Ju, H.Y.; Akoh, C.C.; Chang, R.H.; Shieh, C.J. Continuous enzymatic synthesis of biodiesel with Novozym 435. Power Fuels 2008, 22, 84044. Oliveira, D.; Oliveira, J.V. Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J. Supercrit. Fluids 2001, 19, 14148. Mittelbach, M. Lipase catalyzed alcoholysis of sunflower oil. J. Am. Oil Chem. Soc. 1990, 67, 16870. Li, S.-F.; Fan, Y.-H.; Hu, R.-F.; Wu, W.-T. Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J. Mol. Catal. B 2011, 72, 405. Kumari, V.; Shah, S.; Gupta, M.N. Preparation of biodiesel by lipase-catalyzed transesterification of high cost-free fatty acid containing oil from Madhuca indica. Power Fuels 2006, 21, 36872. Hsu, A.-F.; Jones, K.; Marmer, W.; Foglia, T. Production of alkyl esters from tallow and grease working with lipase immobilized inside a phyllosilicate sol-gel. J. Am. Oil Chem. Soc. 2001, 78, 58588. Noureddini, H.; Gao, X.; Philkana, R.S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 2005, 96, 76977. Or ire, O.; Buisson, P.; Pierre, A.C. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J. Mol. Catal. B 2006, 42, 10613. Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995021. Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Healthcare application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005, 100, 11. Huang, S.-H.; Liao, M.-H.; Chen, D.-H. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol. Prog. 2003, 19, 1095100. Mak, K.-H. Immobilization of Lipase from Pseudomonas cepacia onto Magnetic Nanoparticles. Master’s Thesis, Tatung University, Taipei, Taiwan, June 2008. Mak, K.-H.; Yu, C.-Y.; Kuan, I.-C.; Lee, S.-L. Immobilization of Pseudomonas cepecia Lipase onto Magnetic Nanoparticles for Biodiesel Production. In Progress in Improvement and Applications of Renewable Power; Yang, S.-S., Sayigh, A.A.M., Lai, C.-M., Chen, S., Eds.; National Taiwan University: Taipei, Taiwan, 2009; pp. 518. Montgomery, D.C. Response Surface Approaches and PAR1 Antagonist Gene ID Styles. Design and style and Evaluation of Experiments, 6th ed.; John Wiley Sons: Hoboken, NJ, USA, 2005; pp. 40563. Kuan, I.-C.; Lee, C.-C.; Tsai, B.-H.; Lee, S.-L.; Lee, W.-T.; Yu, C.-Y. Optimizing the production of biodiesel applying lipase entrapped in biomimetic silica. Energies 2013, 6, 2052064. Chen, H.-C.; Ju, H.-Y.; Wu, T.-T.; Liu, Y.-C.; Lee, C.-C.; Chang, C.; Chung, Y.-L.; Shieh, C.-J. Continuous production of lipase-catalyzed biodiesel within a packed-bed reactor: Optimization and enzyme reuse study. J. Biomed. Biotechnol. 2011, 2011, 1.Int. J. Mol. Sci. 2013,25. Mears, D.E. Tests for transport limitations in experimental catalytic reactors. Ind. Eng. Chem. Approach Des. Dev. 1971, 10, 54147. 26. Mineralogy Database. Accessible on the net: http://webmineral/ (accessed on 19 November 2013). 27. Cussler, E.L. Fundamentals of Mass Transfer. Diffusion: Mass Transfer in Fluid Systems, 3rd ed.; Cambridge University Press: New York, NY, USA, 2009; pp. 23773. 28. Wilke, C.R.; Chang, P. Correlatio.

Share this post on:

Author: bet-bromodomain.